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Abstract

In this paper, we proposed a matrix inequality for
testing the stability of the segment of polynomials
determined by p0 and p1, where p0 and p1 are Hur-
witz stable polynomials. Furthermore, if p0 is a sta-
ble polynomial we obtain local convex directions with
respect to p0 using the solutions of this inequality.
Finally given the stable polynomial p0 and the co-
efficients of p1 satisfying the same matrix inequal-
ity, we find a number k0 such that p0(t) + kp1(t)
is Hurwitz for every k > k0, that means estimat-
ing the minimum left extreme, which was studied by
Bialas. Key words: Hurwitz polynomials, seg-
ments of polynomials, matrix inequality, matrices of
monotone kind.

1 Introduction

Motivated by the robustness analysis of systems with
uncertain parameters, different approaches to study
the stability of segment of polynomials have been
proposed ([4], [5], [7], [8], [13]). The question is
to find conditions on the stable polynomials p0(t)
and p1(t) with n = deg(p0) ≥ deg(p1) such that
the segment of polynomials described by P (t, λ) =
λp0(t)+ (1−λ)p1(t) is stable for all λ ∈ [0, 1]. There
are several important results where necessary and
sufficient conditions were obtained: Bialas’s Theo-
rem (see [2] and [4]), the Segment Lemma, which
was stablished by Chapellat and Bhattacharyya (see

[3] and [8]), and the Bose’s test [6].

Besides the three necessary and sufficient con-
ditions mentioned above several algorithms have
been developed to test efficiently the stability of seg-
ments of polynomials: using the Segment Lemma
there was developed an algorithm in [7]. Sufficients
conditions to prove the stability of segments of poly-
nomials were gotten by Rantzer (see [10] and [13]).
Conditions in the frequency domain were derived in
[5]. Recently, in [11] it was obtained a procedure
to check the Hurwitz stability of convex combina-
tions of polynomials in a finite number of opera-
tions. Following the ideas exposed in [1] this pa-
per address the problem of obtaining simple alge-
braic conditions for checking the stability of a seg-
ment of polynomials. Although our approach pro-
vides a sufficient condition, has the advantage to be
useful when deg(p0) = n and deg(p1) = n, n − 1
in contrast with the Bialas’s Theorem where it is
supposed that deg(p0) > deg(p1), or the Segment
Lemma and Bose’s Test where it is supposed that
deg(p0) = deg(p1).

In the above mentioned works ([4], [5], [7], [8],
[13]) it is supposed that the two extrems are stable or
one is stable and the other one is semistable. Unlike
such works, our approach can be applied, supposing
at the beginning that only one is stable. The situa-
tion is that we know only one stable polynomial p0(t)
and the problem is to find polynomials p1(t) such
that λp0(t)+(1−λ)p1(t) is Hurwitz for all λ ∈ [0, 1].
In this case we say that p1 − p0 is a local convex di-
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rection to p0. We find some of such polynomials p1.
Our approach is as follows.

Consider a stable polynomial p0(t) = tn +
a1t

n−1 + ... + an which is the nominal polynomial
and let p1(t) be an arbitrary polynomial of degree
n− 1. Define the matrix

E(n,n−1) =

 a1 −1 0 0 ... 0 0
−a3 a2 −a1 1 ... 0 0
a5 −a4 a3 −a2 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−1 −an−2
0 0 0 0 ... 0 an

 (1)

If the polynomials p0(t) = tn+a1t
n−1+...+an

and p1(t) = c1t
n−1 + c2t

n−2 + ... + cn are Hurwitz
and the vector c = (c1, c2, ..., cn)T � 0 satisfies the
system of linear inequalities

E(n,n−1)c � 0 (2)

then, the convex combination λp0(t) + (1 − λ)p1(t)
is Hurwitz for every λ ∈ [0, 1]. Here the symbol � 0
(� 0) means that every component of a given vec-
tor is nonnegative (nonpositive) and the symbol � 0
means that every component of a given vector is
nonnegative but there is a component different from
zero.
Besides we study the solutions of (2), which means to
find local convex directions, p1−p0, with respect p0.
Finally, we address the problem of stimating the min-
imum left extreme, that is, given the n−degree stable
polynomial p0(t) and the (n− 1)−degree polynomial
p1 is such that the vector of coefficients of p1 satisfies
(2) then we find a number k0 such that p0(t)+kp1(t)
is Hurwitz for every k > k0. The problem of calculat-
ing the minimum left extreme was studied and solved
by Bialas with out supposing an extra condition on
p1. Generally, our approach estimates, but does not
calculate exactly the minimum left extreme. How-
ever the operations are simple and can be applied
to n−degree polynomials p1, which is not possible
in the result due to Bialas since there it is supposed
that deg(p0) > deg(p1).

The paper is organized as follows: in Sec-
tion 2 sufficient conditions assuring that a segment
of polynomials consists of Hurwitz polynomials are
given when it is known that the extremes p0(t) and
p1(t) are Hurwitz. In Section 3 we suppose that
p0(t) is Hurwitz and we stablish sufficient condi-
tions on cT = (c1, c2, ..., cn) (the vector of coefi-
cients of p1(t) = c1t

n−1 + c2t
n−2 + ... + cn) such

that λp0(t)+(1−λ)p1(t) is Hurwitz for all λ ∈ [0, 1].
Finally in Section 4 we estimate the minimum left
extreme.

2 Segments of stable polynomi-
als

The aim of this section is to obtain conditions for
the stability of segments of polynomials. We will
present the proof of the our results in a forthcom-
ing paper. The main result is based on the following
lemma where sufficient conditions for a real polyno-
mial to be Hurwitz are given.

Lemma 1 Let F (t) and f(t) be real polynomials of
degree n, such that f(0) 6= 0 and the roots of F (t)
are contained in C+. Consider the 2n−degree poly-
nomial given by F (t)f(t) and let l be a straight line
that passes through the origin. If F (iω)f(iω) 6= 0 and
F (iω)f(iω) does not intersect l for all ω > 0, then
all the roots of f(t) are in C+.

Remark 2 Particular cases of lemma 1 are the sit-
uations when l is the real axis or the imaginary axis.
This cases can easily be used for calculations. In the
following theorem we apply the lemma 1 when l is
the imaginary axis.

Theorem 3 Consider the Hurwitz polyno-
mials p0(t) = tn + a1t

n−1 + ... + an and
p1(t) = c1t

n−1 + c2t
n−2 + ... + cn. If

c = (c1, c2, ..., cn)T � 0 is a solution to (2), then, for
all λ ∈ [0, 1], the polynomial λp0(t) + (1− λ)p1(t) is
Hurwitz.

Remark 4 In the above theorem we have that
deg(p0(t)) = n and deg(p1(t)) = n − 1. A simi-
lar result is obtained if deg(p0(t)) = deg(p1(t)) =
n. In that case if p0(t) = tn + a1t

n−1 + ... + an,
p1(t) = c1t

n +c2t
n−1 + ...+cn+1, the matrix E(n,n) ∈

M(n+1)×(n+1) is defined by

E(n,n) =

 1 0 0 0 ... 0 0
−a2 a1 −1 0 ... 0 0
a4 −a3 a2 −a1 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−1 −an−2
0 0 0 0 ... 0 an

 (3)

Remark 5 There is an obvious relationship between
stable rays and stable segments of polynomials: if
p0(t) + kp1(t) is a stable polynomial for every k ≥ 0
then

(
1

1+k

)
p0(t) +

(
k

1+k

)
p1(t) is a stable polyno-

mial for every k ≥ 0. This means that the stabilty of
the ray p0(t) + kp1(t) is equivalent to the stability of
the open segment [p0(t), p1(t)) . On the other hand,
to get theorem 1 we analyse the real part of complex
number p0(−iω)[λp0 + (1− λ)p1](iω), which is given
by

p0(−iω)[λp0 + (1− λ)p1](iω) =

λ
[
P 2(ω2) + ω2Q(ω2)

]
+
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+(1− λ)
[
P (ω2)p(ω2) + ω2Q(ω2)q(ω2)

]
+

+iω(1− λ)
[
P (ω2)q(ω2)−Q(ω2)p(ω2)

]
(4)

Other posiblity is to analyse the imaginary
part. Such analysis was done in [1] and the results
were gotten in terms of rays. Given the Hurwitz
polynomial p0(t) = tn + a1t

n−1 + ... + an define the
matrix

D(n,n−1) =

 1 0 0 0 ... 0 0
−a2 a1 −1 0 ... 0 0
a4 −a3 a2 −a1 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−2 −an−3
0 0 0 0 ... −an an−1

 (5)

By the above observations and theorems 1 in
[1] if p1(t) = c1t

n−1 +c2t
n−2 + ...+cn is Hurwitz and

c = (c1, c2, ..., cn)T � 0 satisfies the system of linear
inequalities

D(n,n−1)c � 0 (6)

then, for all λ ∈ [0, 1], the polynomial λp0(t) + (1−
λ)p1(t) is Hurwitz.
As was noted in [1] our results can be extended to the
cases when the deg(p1(t)) = n and n− 2. Condition
(6) must be satisfied for a similar matrix D. Given a
real polynomial p0(t) = tn + a1t

n−1 + ... + an define
the matrix D ∈Mn×(n+1) by

D(n,n) =


a1 −1 0 0 ... 0 0
−a3 a2 −a1 1 ... 0 0
a5 −a4 a3 −a2 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... −an−2 an−3
0 0 0 0 ... an −an−1


If c = (c1, c2, ..., cn+1)T � 0 is a solution to

D(n,n)c � 0, then [p0(t), p1(t)] is a stable segment,
where the polynomial p1(t) = c1t

n+c2t
n−1+...+cn+1

is a Hurwitz polynomial.
For the case when the degree of p1 is n − 2,

define the matrix D ∈M(n−1)×(n−1) by

D(n,n−2) =


a1 −1 0 0 ... 0 0
−a3 a2 −a1 1 ... 0 0
a5 −a4 a3 −a2 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−2 −an−3
0 0 0 0 ... −an an−1


Then, if c = (c1, c2, ..., cn−1)T � 0 is a so-

lution to D(n,n−2)c � 0, then [p0(t), p1(t)] is a sta-
ble segment, where the polynomial p1(t) = c1t

n−2 +
c2t

n−3 + ... + cn−1 is a Hurwitz polynomial.

Remark 6 Unlike the results in [1] in this paper we
can not obtain a condition when deg(p0(t)) = n and

deg(p1(t)) = n − 2 since the corresponding matrix
E(n,n−2) is the following matrix in Mn×(n−1)

E(n,n−2) =

 −1 0 0 0 ... 0 0
a2 a1 −1 0 ... 0 0
−a4 −a3 a2 −a1 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−1 −an−2
0 0 0 0 ... 0 an


then the first inequality is −c1 ≥ 0 which is not pos-
sible since c1 > 0.

3 Local Convex Directions

We now study a different problem: a polynomial
p0(t) is given and we know that p0(t) is Hurwitz,
then we wonder if there are polynomials p1(t) such
that [p0(t), p1(t)] is a segment of Hurwitz polynomi-
als. This means to find the local convex directions
p1 − p0 with respect to the polynomial p0(t). The
following theorem solves in part this problem.

Theorem 7 Let p0(t) = tn + a1t
n−1 + ... + an be

a Hurwitz polynomial. Let E(n,n−1) be the corre-
sponding matrix defined by (1). If the vector c =
(c1, c2, ..., cn)T � 0 is a solution to the system of lin-
ear inequalities (2) then, p1(t)−p0(t) is a local convex
direction with respect to the polynomial p0(t), where
p1(t) is given by p1(t) =

∑n
i=1 cit

n−i.

Remark 8 Note that at the beginning of this sec-
tion we emphasize that theorem 2 solves the posed
problem only “in part”. This is because the theorem
2 only gives sufficient conditions on the coefficients
of p1(t). Such conditions are the linear inequalities
(2), but such inequalities there could not have a so-
lution. Or there could be polynomials p1 such that
[p0(t), p1(t)] is a segment of Hurwitz polynomials, but
the vector of coefficients of p1(t) does not satisfy the
linear inequality (2) as can be observed in the follow-
ing example.

Example 9 Consider the Hurwitz polynomials
p0(t) = t3 + 2t2 + t + 1 and p1(t) = t2 + t + 3,

The matrix E(3,2) is given by

E(3,2) =

 2 −1 0
−1 1 −2
0 0 1


Then the linear inequalities (2) are not satis-

fied since 2 −1 0
−1 1 −2
0 0 1

  1
1
3

 =

 1
−6
3


However the segment [p0(t), p1(t)] is a segment

of stable polynomials since λp0(t) + (1 − λ)p1(t) =
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λt3 +(λ+1)t2 + t+3−2λ is stable for λ = 0 and for
λ ∈ (0, 1] the Routh-Hurwitz conditions are satisfied
since λ, (λ + 1), 1, 3− 2λ > 0 and (λ + 1)(1)− λ(3−
2λ) = 2λ2 − 2λ + 1 > 0 for every λ ∈ (0, 1].

This example illustrate the importance of
studying the problem of the existence of solutions
of (2) and the characteization of the set of solutions.

Definition 10 It is said that a m× s real matrix R
is a matrix of monotone kind if Rz � 0 implies z � 0
(see [12]).

It is known that a square real matrix R is of
monotone kind if and only if there exists R−1 and
R−1 � 0, where R−1 � 0 means that all its entries
are nonnegative (see [9]).

The matrix E(n,n−1) is of monotone kind, that
is it is invertible and E−1

(n,n−1) has elements nonnega-
tive. The proof follows similarly as in [1] was proved
that the elements of D−1

(n,n−1) are nonnegative.
Now, denote by V = {z ∈ Rn/{0} | zi ≥

0,∀i = 1, 2, ...n}.

Theorem 11 The set H of solutions of the sys-
tem of linear inequalities (2) can be written as H =
E−1

(n,n−1)V.

Corollary 12 Let p0(t) = tn + a1t
n−1 + ... + an

be a Hurwitz polynomial. Let E(n,n−1) be the cor-
responding matrix defined by (1). If the vector c =
(c1, c2, ..., cn)T ∈ E−1

(n,n−1)V then [p0(t), p1(t)] is a
segment of Hurwitz polynomials, where the polyno-
mial p1(t) is given by p1(t) =

∑n
i=1 cit

n−i.�

Remark 13 If we make the identification of a
n−degree polynomial f(t) = b0t

n + b1t
n−1 + ... + bn

with the vector (b0, b1, ..., bn) ∈ Rn+1 and a (n −
1)−degree polynomial g(t) = d1t

n−1 + d2t
n−2 +

... + dn with the vector (0, d1, ..., dn) ∈ Rn+1 then,
given the Hurwitz polynomial p0(t), the polynomi-
als p1(t) that satisfy (2) can be seen as a polyhe-
dral cone C generated by w1 =

(
0, E−1

(n,n−1)e1

)
, w2 =(

0, E−1
(n,n−1)e2

)
, ..., wn =

(
0, E−1

(n,n−1)en

)
, where

e1, e2, ..., en are the canonical vectors in Rn. If we
identificate p0(t) with the vector w0 = (1, a1, ..., an)
then the local convex directions p1−p0 can be seen as
vectors w−w0 with w ∈ C. And the set consisting of
the union of all segments [p0(t), p1(t)] is the minimal
convex set containing C and w0.

Example 14 Consider the Hurwitz polynomials
p0(t) = t3+2t2+ 3

2 t+1 and p1(t) = 2t2+4t+2,

The matrix E(3,2) is given by

E(3,2) =

 2 −1 0
−1 3

2 −2
0 0 1


and 2 −1 0

−1 3
2 −2

0 0 1

 2
4
2

 =

 0
0
2


Consequently [p0(t), p1(t)] is a segment of stable poly-
nomials. But this fact can not verified by the results
in [1] since the matrix D(3,2) is given by

D(3,2) =

 1 0 0
−11 6 −1
0 −6 11


and we have 1 0 0

− 3
2 2 −1

0 −1 3
2

  2
4
2

 =

 2
3
−1


.
On the other hand, we will see that it is not posible to
verify the stability of the segment using the Rantzer-
type conditions (see [10], [13]).

4 The minimum left extreme

Consider the polynomial

p(t, k) = p0(t) + kp1(t) (7)

where p0(t) = tn + a1t
n−1 + ... + an is a Hurwitz

stable polynomial and, let E(n,n−1) be the corre-
sponding matrix defined as in (1). If the coefficient
vector c = (c1, c2, ..., cn)T � 0 of the polynomial
p1(t) =

∑n
i=1 cit

n−i is a solution to the system of lin-
ear inequalities (2) then, p0(t) + kp1(t) is a Hurwitz
polynomial ∀k ≥ 0. For the robust stability analy-
sis of the linear system asociated with p0(t), we are
concerned with estimating the minimum kmin < 0
such that p0(t) + kp1(t) is a Hurwitz polynomial
∀k ≥ kmin. In [4] it was proved that

kmin =
1

λ−min[−H−1(p0)H(p1)]
(8)

where H(p0),H(p1) are the corresponding Hur-
witz matrices of p0 and p1 respectively and,
λ−min[−H−1(p0)H(p1)] is the least negative eigen-
value of the matrix −H−1(p0)H(p1).
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Observe that numerically (8) is not easy to
calculate. In the following we get an easy procedure
to obtain an estimation of kmin. Define the matrix

Z(n,n−1) =

 a1 −2 0 0 ... 0 0
0 a2 −2a1 2 ... 0 0
0 0 a3 −2a2 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−1 −2an−2
0 0 0 0 ... 0 an

 (9)

and let Zi
(n,n−1) denote the i-th row of matrix

Z(n.n−1) and a = (a1, a2, ..., an)T .

Theorem 15 Let p0(t) = tn + a1t
n−1 + ... + an be

a Hurwitz polynomial. Let E(n,n−1) be the corre-
sponding matrix defined by (1). If the vector c =
(c1, c2, ..., cn)T � 0 is a solution to the system of lin-
ear inequalities (2) and the polynomial p1(t) is given
by p1(t) =

∑n
i=1 cit

n−i,

then p0(t)+kp1(t) is a Hurwitz polynomials ∀k > k0,

where k0 = max
i=1,...,n

(
−Zi

(n,n−1)a

Ei
(n,n−1)c

)
, that is kmin ≤ k0.

Remark 16 In the same way as we have studied
the minimum kmin < 0 such that p0(t) + kp1(t) is
a Hurwitz polynomial ∀k ≥ kmin we can study qmin,
which is the least number to makes stable the family
p0(t)+ q [p1(t)− p0(t)] ∀q ∈ (qmin, 1). Here the value
of the right extreme of (qmin, 1) is 1 because p0 is an
element of the set of Hurwitz polynomials with de-
gree n (that is, p0 ∈ Hn) and for q = 1 we obtained
p1 which is a polynomial on the boundary of Hn. Let
p0(t) = tn +a1t

n−1 + ...+an be a Hurwitz polynomial
and let E(n,n−1) be the corresponding matrix defined
by (1). If the vector c = (c1, c2, ..., cn)T � 0 is a so-
lution to the system of linear inequalities Ec � 0 and
the polynomial p1(t) is given by p1(t) =

∑n
i=1 cit

n−i,

define k0 = max
i=1,...,n

(
−Zia

Eic

)
. Consequently p0(t) +

kp1(t) is Hurwitz ∀k > k0. If k0 > −1 then
1

1+kp0(t) + k
1+kp1(t) = p0(t) + k

1+k (p1(t)− p0(t)) is
Hurwitz ∀k > k0 and then qmin can be estimated by
q0 = k0

1+k0
. If k0 ≤ −1, consider the limit of k

k+1

when k → −1+, we get that k
k+1 → −∞ and then

it is satisfied that p0(t) + q(p1(t)− p0(t)) is Hurwitz
∀k ∈ (−∞, 1) �

Example 17 Given the polynomials p0(t) = t3 +
7t2 + 14t + 8, p1(t) = t2 + 4t + 6

Z(3,2) =

 7 −2 0
0 14 −14
0 0 8

 , a =

 7
14
8

 ,

Z(3,2)a =

 21
84
64



E(3,2) =

 7 −1 0
−8 14 −7
0 0 8

 , c =

 1
4
6

 ,

E(3,2)c =

 3
6
48


k0 = max

(
− 21

3 ,− 84
6 ,− 64

48

)
= − 4

3 < −1

H(p0) =

 7 8 0
1 14 0
0 7 8

 , H(p1) = 1 6 0
0 4 0
0 1 6


H−1(p0)H(p1) =

 7
45

26
45 0

− 1
90

11
45 0

7
720 − 4

45
3
4

 ,

σ
(
−H−1(p0)H(p1)

)
= {− 3

4 ,− 1
5 ±

1
15 i}

λmin = − 3
4 , kmin = − 4

3 < −1.Then, in this
example the two approaches lead to the conclusion
that p0(t) + kp1(t) is Hurwitz ∀k > − 4

3 and p0(t) +
q [p1(t)− p0(t)] is Hurwitz ∀q ∈ (−∞, 1).

Example 18 p0(t) = t3 + 7t2 + 14t + 8, p1(t) =
26t2 + 137t + 90

Z(3,2) =

 7 −2 0
0 14 −14
0 0 8

 , a =

 7
14
8

 ,

Z(3,2)a =

 21
84
64


E(3,2) =

 7 −1 0
−8 14 −7
0 0 8

 , c =

 26
137
90

 ,

E(3,2)c =

 45
1080
720


k0 = max

(
− 21

45 ,− 84
1080 ,− 64

720

)
= − 7

90 =
−0.07778 > −1

H(p0) =

 7 8 0
1 14 0
0 7 8

 , H(p1) = 26 90 0
0 137 0
0 26 90


H−1(p0)H(p1) =

 182
45

82
45 0

− 13
45

869
90 0

91
360 − 3743

720
45
4

 ,

σ
(
−H−1(p0)H(p1)

)
= {−11.25,−4.1399,−9.5601}

λmin = −11.25, kmin = −0.088889 >
−1.Then, in this example our approach leads to

p0(t) + kp1(t) is Hurwitz ∀k > −0.07778 and
p0(t) + q [p1(t)− p0(t)] is Hurwitz ∀q ∈

(−0.08434, 1)
and the approach of Bialas leads to
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p0(t) + kp1(t) is Hurwitz ∀k > −0.088889 and
p0(t) + q [p1(t)− p0(t)] is Hurwitz ∀q ∈

(−0.097561, 1) .

Remark 19 An advantage of our approach com-
pared with that of Bialas is that we can estimate the
minimum left extremum when the two polinomials
have the same degree. Let p0(t) = tn + a1t

n−1 +
... + an. The corresponding matrix Z(n,n) is defined
by

Z(n,n) =

 1 0 0 0 ... 0 0
0 a1 −2 0 ... 0 0
0 0 a2 −2a1 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... an−1 −2an−2
0 0 0 0 ... 0 an


Let E(n,n) be the corresponding matrix defined by (3).
If the vector c = (c0, c1, ..., cn)T � 0 is a solution to
the system of linear inequalities E(n,n)c � 0 and the
polynomial p1(t) is given by p1(t) =

∑n
i=0 cit

n−i,
then p0(t) + kp1(t) is a Hurwitz polynomial ∀k > k0,
where k0 = max

i=1,...,n,n+1

(
−Zia

Eic

)
. That is kmin ≤ k0.
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